
Informatica Economică vol. 14, no. 2/2010 61

Optimizing Spatial Databases

Anda VELICANU, Ştefan OLARU
Academy of Economic Studies, Bucharest, Romania

anda.velicanu@ie.ase.ro, stefan4@gmail.com

This paper describes the best way to improve the optimization of spatial databases: through
spatial indexes. The most commune and utilized spatial indexes are R-tree and Quadtree and
they are presented, analyzed and compared in this paper. Also there are given a few examples
of queries that run in Oracle Spatial and are being supported by an R-tree spatial index. Spa-
tial databases offer special features that can be very helpful when needing to represent such
data. But in terms of storage and time costs, spatial data can require a lot of resources. This
is why optimizing the database is one of the most important aspects when working with large
volumes of data.
Keywords: Spatial Database, Spatial Index, R-tree, Quadtree, Optimization

Introduction
Spatial objects [15] consisting of lines,

surfaces, volumes and higher dimensions ob-
jects are frequently used in applications of
computer-aided design, cartography, geo-
graphic information systems. They are de-
scribed through spatial attributes (length,
configuration, perimeter, area, volume, etc.)
and also through non-spatial attributes (gen-
eration’s data, owner, membership of a supe-
rior structure, etc.). The values of the objects’
spatial attributes represent the spatial data.
Spatial data can be divided in point data and
regional data. The point data is a point which
is completely characterized by its location in
a multidimensional space. It may come di-
rectly from measurements or by transforming
in order to be more easily stored and re-
trieved [16]. The representation of spatial
data in Oracle is done according to the ANSI
standard. Spatial database is a collection of
spatial and non-spatial data that is interre-
lated, of data descriptions and links between
data. Such a database is optimized so as to
best store and interrogate data objects located
spatially, as points, lines or polygons. Com-
pared with normal databases, which work on-
ly with numeric, character or calendar data,
spatial databases offer additional functions
that allow processing spatial data types.
Spatial databases are used in areas where as-
pects of maps or photography are very im-
portant.
Optimizing spatial databases means, in the

first place, optimizing the queries, which re-
quires less time spent by running the queries
before receiving an answer. This is called the
response time of a query. The response time
can be controlled, minimized by using ap-
propriate indexes depending on the data that
is been retrieved. When a query works with
one or many rows that store spatial data, it
means a spatial index should be used.
Spatial indexes include Grid index, Z-order,
Quadtree, Octree, UB-tree, R-tree, kd-tree,
M-tree. R-tree and Quadtree are intensively
used in combination with spatial data and
Oracle Spatial is one example of DBMS (Da-
taBase Management System) that uses auto-
matically these types of spatial indexes for its
spatial queries (queries that mostly work with
spatial data).
Indexing spatial data [15] is a mechanism to
decrease the number of searches, and a spa-
tial index (considered logic) is used to locate
objects in the same area of data (window
query) or from different locations (spatial
junction). Oracle Spatial uses two types of
indexing:
R-Tree (SDO_INDEX_TABLE table, main-
taining the SDO_RTREE_SEQ_NAME se-
quence in the virtual table US-
ER_SDO_INDEX_METADATA) and
QuadTree (a tree structure, whose nodes have
up to four children and is used to divide two-
dimensional space, by recursively subdivid-
ing itself in four regions) [14].

1

62 Informatica Economică vol. 14, no. 2/2010

The distance between two spatial objects is
the minimum distance between any points
within them. Two objects are within a certain
distance of each other if their distance is less
than the specified distance. To determine
spatial relations, Oracle Spatial has several
methods of secondary filtering:
 SDO_RELATE operator evaluates topo-

logical criteria;
 SDO_WITHIN_DISTANCE operator de-

termines if two spatial objects are within
a certain distance;

 SDO_NN operator identifies the nearest
neighbor of a spatial object.

2 Spatial indexing structures
Spatial Indexing is used by spatial databases
in order to optimize spatial queries, because
indexes used by non-spatial databases cannot
handle such operations. Therefore the spatial
indexing structure chosen by a DBMS is the
one that determines the execution time of its
requests and even the ability to return specif-
ic results.
The most common spatial indexes are: Grid
index, Z-order, Quadtree, Octree, UB-tree,
R-tree, kd-tree, M-tree and they are briefly
discussed below.
Grid index
In terms of spatial indexing, the grid is a spe-
cific area which is divided into a series of
contiguous cells, that can have unique iden-
tifiers, so they can be used as spatial indexes.
Such grids exist in a variety of forms: square,
triangular, rectangular, hexagonal, diamond
cells etc.
Z-order
Because of its behavior that can be locally
preserved, this kind of index is used for data
structures to map multidimensional data in
one dimension. Once the data is sorted in
such a one-dimensional ordering, it can be
used as binary search trees, B trees, lists or
hash tables. The obtained ranking can be de-
scribed as equivalent to the ordering that can
be obtained by crossing in depth a Quadtree
(tree with four dimensions). Because of this
connection between the two types of indexa-
tion, when using Z-order one can built effec-

tively Quadtrees and multidimensional data
structures.
Quadtree
The structure from which this type of index-
ing starts is a tree whose inner nodes have up
to four children. Quadtrees are commonly
used to partition a two-dimensional space by
dividing it into four identically shaped re-
gions: squares, rectangles etc.
Octree
Are similar to Quadtree, except that the
nodes of the tree structure have up to eight
children and Octrees are commonly used to
partition a three dimensional space by divid-
ing it into eight regions.
UB-tree
UB trees are balanced trees for efficient sto-
rage and query of multidimensional data.
They are actually B + trees (with information
only in the leaves), with records stored as in
Z-order.
R-tree
Is the type most common indexing for spatial
data. Objects (geometric shapes, lines or
points) are grouped using a MBR (Minimum
Bounding Rectangle). Objects are added to
an MBR with an index, leading to the smal-
lest distance possible.
kd-tree
Kd (k-dimensional) Tree is a space partition-
ing data structure for organizing points in a
k-dimensional space. Kd-tree is used in ap-
plications involving multi-dimensional
search key.
m-tree
m-tree index can be used for efficient han-
dling of complex object queries using an ar-
bitrary metric.
Since R-Tree and QuadTree indexing are
mostly used for spatial data, they will be ana-
lyzed further and compared in the following
paragraphs.

3 R-tree index
R-tree based indexing requires maintenance
of logical tree structure that is implemented
as a table. Each R-tree node corresponds to a
row in the table and a child pointer in the R-
tree corresponds to a primary key of the ta-
ble’s row child. The root pointer for the R-

Informatica Economică vol. 14, no. 2/2010 63

tree is stored in index metadata and allows
browsing from the tree root to leaf nodes. A
R-tree's leaf nodes store an MBR area for
each data geometry and the geometry iden-
tifier. Queries and updates get the R-tree’s
root and browses down to the leaves. More
details about such implementation can be ob-
tained from the source [8].
Whenever a R-tree node is visited, the cor-
responding spatial row index is selected us-
ing the internal SQL command. This means
that the query and the update processes for
R-trees involve more recursive SQL state-
ments then the Quadtrees. As a result, some

operations of data manipulation language
(DML), especially updates, are likely to be
more expensive [9].
In figure 1 there can be seen an example
from source [12], which indicates two differ-
ent R-trees for the same set of data. R-tree is
suitable for storage on secondary sources of
memory (eg disk). Each node of the tree is
placed on different pages from the disk. This
makes the R-tree to be used in particular for
applications with large volumes of data,
where indexes become too large to fit in
main memory.

Fig. 1. R-trees for the same data set [12]

When evaluating an index, the most impor-
tant thing is the response time of a query, if
there was applied in advance such an index.
The response time is in fact the elapsed time
between launching the query and receiving
the proper answer. There are several criteria
that may affect the response time of an R-tree
configuration for the two-dimensional case,
presented in [6]:
1. The MBR area
2. The MBR perimeter
3. The distance between bounding rectan-

gles
4. Using the storage space

In multidimensional space, the surface is re-
placed by volume and the perimeter of a po-
lygon or hyper-polygon is defined by the sum
of its extensions in different sizes or by the
sum of volumes of the polygon’s sides. Cov-
erage polygons with minimum volumes are
desirable, so there will be as little unused
space (space that is indexed, but contains no
data). In a R-tree configuration as less un-
used space, as more queries that do not index
data are likely to be removed from the R-tree,
reducing the number of visits on the disc.
Minimizing the 2nd and 3rd criteria and max-
imizing the 4th criteria will reduce the num-
ber of times the disc is accessed. In some

64 Informatica Economică vol. 14, no. 2/2010

cases these improvements can be contradicto-
ry (explanation given in [6]). For example an
increase in the use of storage space may re-
sult in an increased indexed surface [12].
Building an R-tree index depends on two
characteristics:
 The way the objects are inserted in the

tree
 Dimensionality
Inserting objects can be made incrementally
or in batches. The incremental way implies
inserting the objects one by one in the tree,
starting from the root and seeking a way to

reach a leaf, where the object will actually be
added.
Inserting in batches is made by using a data
set and building a tree bottom up, starting
from the leaf to the root.
The dimensionality of an R-tree can be D-
dimensional or linear. In the first case group-
ing data and coverage polygons in the tree is
done by clustering in multidimensional
space.
These four methods to build an R-tree (in-
cremental method, batches method, D-
dimensional method and linear method) are
shown in table 1.

 Table 1. Methods for building R-tree indexes [12]
 Incremental method Batches method
D-dimensional method Quadric/linear R [10], R+ [5],

R* [6]
Optimized iterative R-tree

Linear method Hilbert R-tree [3] R-tree by space filling curves
[11], [4]
Parallel R-tree [13]

On one hand, incremental methods are pri-
marily used to enable working with dynamic
data. But if the data set is known from the
beginning, batches methods are preferred.
This happens because incremental methods
are dependent on the way the data set is in-
serted in the tree. Objects already inserted are
likely to be part of the R-tree coverage poly-
gons and is not properly to be represented as
such throughout the dataset. However incre-
mental methods are encountered when insert-
ing objects one by one is needed.
On the other hand, batch methods can benefit
from the fact that the entire set of data is
known in advance. Such methods lead to
parallelism. In the bottom-up approach, dif-
ferent processors can be assigned to different
sectors of the data space, in order to group
objects located in there.
Linear methods have the advantage they are
fast, but because of their struggle to map
multidimensional polygons in one dimen-
sion, positioning and spatial extensions of
polygons are not taken into account. It can be
a major disadvantage in working with spatial
databases.
Following this analysis of methods to build

R-tree indexes, I think for complex modern
applications (for example the advanced data-
bases developed SOA architecture), the best
type of R-tree would be the combination of
batch and multi-dimensional modeled trees.
When working with large databases, such as
advanced databases, it is important to achieve
an appropriate index in order to have data
queries with the lowest response time. In par-
ticular, spatial databases have key characte-
ristics, such as spatial positioning, which are
well represented only by multi-dimensional
methods. Since the data set is usually known
before the application is designed, the R-tree
batch building method can also be chosen.

4 Quadtree index
Quadtree term is used to describe a class of
hierarchical data structures whose common
property is that they are based on the princi-
ple of recursive decomposition of space. De-
composition can be in equal parts on each
level (that is, regular polygons) or may de-
pend on incoming data. The number of times,
in which the decomposition is made, can be
fixed in advance or may be governed by the
properties of input data [7].

Informatica Economică vol. 14, no. 2/2010 65

There are several types of Quadtree indexes,
classified by the type of data that is repre-
sented (surfaces, points, lines or curves), by
the independence of the tree’s shape on the
order in which data is processed or by the
variability of the tree obtained from data
processing. The following paragraphs de-
scribe the types of trees with four nodes
(Quadtree): region, point edge.
Region Quadtree
Is a partition of two-dimensional space made
by decomposing the region into four equal
quadrants, then sub-quadrants and so on,
each leaf node containing data which corre-
sponds to a specific sub-region. Each node in
the tree has either four children or none (leaf
node).
A Region tree with four sizes (Quadtree) and
a depth of n can be used for representing an
image of 2n × 2n pixels, each pixel’s value is
0 or 1. Root node represents the entire image
region. If in a region there are pixels which
are not all 0 or 1, the region will divide in the
sub-regions. Each leaf node represents a
block of pixels that are either all 0 or all 1.
Another example, for how this type of index-
ing can be used, is storing temperatures from
an area. Each leaf node stores an average
temperature from the corresponding sub-
region.
If Region Quadtree is used to represent a data
set (eg latitude and longitude of tourist attrac-
tions), the regions are subdivided until each
leaf contains one point.
Point Quadtree
This index is based on binary trees used to
represent two-dimensional point data type.
The difference between Point Quadtrees and
Binary Trees is that Point Quadtrees have
more complex nodes that contain more than
two pointers (left, right) and information, as
it happens in binary trees. Therefore a point
Quadtree node tree will contain:
 4 pointers: NW, NE, SW and SE,
 the key represented in x, y coordinates,
 information.
The tree shape depends on the order in which
data is processed.
Edge Quadtree

It is used mostly to store lines and not points
and curves are approximated by subdividing
the cells in a very fine resolution. This can
result as very unbalanced trees, which con-
tradicts the fundamental purpose of indexing.
Therefore this tree is rarely used.
Whatever type of Quad tree is used for in-
dexing, there are some common characteris-
tics that all trees have to meet:
 the space is split into cells;
 each cell or group of cells has a maxi-

mum capacity, and when it is reached the
group of cells splits;

 the tree’s dimension and shape depend
(strictly or not) on how the new data is
inserted.

Quadtree indexes are used for image
representation, spatial indexing, efficient
collision detection in two-dimensional space,
inconsistent data storage (such as formatting
information in a spreadsheet or matrix
calculations), solving multidimensional fields
etc. In paper [1] and [2] there are analyzed
Quadtree indexes used for addressing spatial
data and queries.

5 Comparing spatial indexes
In paper [9] are compared Quadtree and R-
tree indexes with examples in Oracle Spatial.
Their implementation and several optimiza-
tions are described.
An example is the use of inner approxima-
tions for Quadtrees and R-trees. Quadtrees
use interior spaces for queries and data ge-
ometries. Pieces of space, for each data ge-
ometry in the spatial indexed tables, are la-
belled as interior or border, considering
whether or not they are within the geometry.
Also, the inner surfaces arising from the exe-
cution of a query are also identified. The in-
terior appeared during a query and candidate
geometries are used together in the interme-
diate filter to avoid the secondary filter
whenever possible. In contrast, R-tree uses
only inner queries. As a result, bypassing the
secondary filter is not possible in all cases,
but will still be effective in most cases.
As data entries, will be used all geometries in
100 miles radius of midtown Manhattan,
New York, namely 23,982 geometries, which

66 Informatica Economică vol. 14, no. 2/2010

makes the data set particularly relevant for
this example.
In table 2 we can see a comparison on the re-
sponse time (in seconds) for queries made on
the chosen dataset. These queries use spatial
operations such as interaction, inclusion,

touching the edges, equality etc. Observe that
the R-tree is faster for the implementation of
all these operators in Oracle Spatial and ob-
tains for example 35% higher speed for inter-
action and 65% more time efficient for the
inside operator.

Table 2. Comparing the average time obtained for Quadtree and R-tree indexes

Oracle Spatial Operator Quadtree (s) R-tree (s)
anyinteract 0.81 0.49

inside 0.80 0.28
contains 0.85 0.04

touch 1.52 1.13
coveredby 0.88 0.66

covers 0.44 0.05
equal 1.53 0.04

overlapbydisjoint 1.77 1.41
overlapbyintersect 1.53 1.41

After these comparisons it can be said that al-
though Quadtree has its advantages in terms
of more complex types of queries, basic spa-
tial operations are performed much faster us-
ing an R-tree indexing type. In Oracle Spa-
tial, MDSYS.SPATIAL_INDEX is the de-
fault R-tree index type that gives support for
spatial query optimization. Most DBMS also
use these type of indexes because overall
they had similar or better performance than
Quadtrees.

6 Oracle Spatial examples
Oracle Spatial is a component of Oracle Da-
tabase. It allows users to manage regional
and geographic data in a native data type in
the Oracle database. Thus, there can be de-
veloped a wide range of applications that
may include: automated mapping, manage-
ment facilities, geographic information sys-
tems or wireless location services [15].
Oracle Spatial supports the object-relational
model for representing the geometry. This
model stores an entire geometry in the native
Oracle’s spatial data type for vector data -
SDO_GEOMETRY. An Oracle table can
contain one or more columns of
SDO_GEOMETRY type. The object-
relational model corresponds to a SQL im-
plementation with geometric data, spatial
characteristics of tables with the OpenGIS

specifications (ODBC / SQL) for geospatial
features [15].
In order to see what operations can be af-
fected by spatial indexes in Oracle, and to
work with spatial data and spatial indexes,
one example will be given. The steps in
building one such application will also be de-
scribed. It’s about one table STORES that is
described below. We consider a chain store
of a company.
 STORES:
 store_id (C,25) – primary key that

unique identifies the store;
 name (C,25) – the store’s name;
 address VARCHAR2(50) – the store’s

address;
 geom_shape (SDO_GEOMETRY) –

the geometric shape the store has and
its spatial location in the field of ac-
tivity.

In figure 2 there are examples of some stores
that possibly the company takes into account.
These are relative positions to the area consi-
dered (defined by the frame). If the company
works with clients only in Bucharest, the lo-
cation of stores will be relative to the total
area of Bucharest; if the company works with
clients from Romania, the location of stores
will be relative to the total area of Romania
etc. It is also possible that some stores have
tangent points or intersect in the space consi-

Informatica Economică vol. 14, no. 2/2010 67

dered. This thing is possible because of the
situation where the company works with both
the hypermarket, which holds a store, and the
store by itself (it would be if a store is in-
cluded in another). It’s also the situation
when a shop hosts within a part of another.
These are examples of contact or intersection
between two stores.
We consider four stores described by the fol-
lowing geometric properties:
1. A shop with a rectangle shape with ex-
treme points (5,2), (9,2), (9,8), (5,8). For rec-
tangles, Oracle Spatial needs to store two
points representing the bottom-left and top-
right points above. In this case will store:
(5,2), (9,8).
2. A shop with a polygon shape with extreme
points (1,3), (4,2), (3,5), (1,5).
For polygons, Oracle Spatial needs to store

five points representing the extreme points
starting from the bottom-left point in counter
clockwise order and once again the initial
starting point. In this case will store: (1,3),
(4,2), (3,5), (1,5), (1,3).
3. A shop in the form of a circle with origin
(7,12) and diameter of 4 cm.
For circles, Oracle Spatial needs to store
three points representing the extreme bottom,
right and left points on the circle. In this case
will store: (7,10), (9,12), (7,14).
4. A shop with a square shape with extreme
points (6,11), (7,11), (7,12), (6,12).
For squares, Oracle Spatial proceeds as for
rectangles, so it needs to store two points
representing the bottom-left and top-right ex-
treme points. In this case will store: (6,11),
(7,12).

Fig. 2. An example of locating the stores

Will work with STORES table and especially
with the geom_shape attribute, in which spa-
tial data is stored.
For solving the problem exposed, we need to
follow the next steps:
1. Creating the STORES table

CREATE TABLE stores (
 store_id VARCHAR2(25) PRIMARY KEY,
 name VARCHAR2(25), address VAR-
CHAR2(50),
 geom_shape SDO_GEOMETRY);

2. Inserting records in STORES table

For the SDO_GEOMETRY row there are
many parameters that have the following sig-
nification:
- SDO_ELEM_INFO_ARRAY also has 3

parameters - SDO_STARTING_OFFSET
(the offset from which the storage in the
SDO_ORDINATE vector starts; the first
offset is 1 and not 0), SDO_ETYPE,
SDO_INTERPRETATION. The last 2
parametres indicate the geometry type.

- SDO_ORDINATE_ARRAY has a varia-
ble number of parameters, that represent

68 Informatica Economică vol. 14, no. 2/2010

the extreme points that can fully describe
each type of geometry.

INSERT INTO stores VALUES(
 '1',
 'Libelula','Piata Amzei nr.2',
 SDO_GEOMETRY(
 2003, -- bi-dimensional polygon
 NULL,
 NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,3), -- a
rectangle (1003 = exterior)
 SDO_ORDINATE_ARRAY(5,2, 9,8) – it
takes only 2 points to define a rectan-
gle: the extreme bottom-left and up-
right
));

INSERT INTO stores VALUES(
 '2',
 'Nufaru','Calea Mosilor nr. 270',
 SDO_GEOMETRY(
 2003, -- bi-dimensional polygon
 NULL,
 NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,1), -- a
polygon
 SDO_ORDINATE_ARRAY(1,3, 4,2, 3,5,
1,5, 1,3)
));

INSERT INTO stores VALUES(
 '3',
 'Magazin pasaj','Piata universitatii',
 SDO_GEOMETRY(
 2003,
 NULL,
 NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,4), -- a
circle
 SDO_ORDINATE_ARRAY(7,10, 9,12, 7,14)
));

INSERT INTO stores VALUES(
 '4',
 'Farmacia Catena','Piata
universitatii',
 SDO_GEOMETRY(
 2003, -- bi-dimensional polygon
 NULL,
 NULL,
 SDO_ELEM_INFO_ARRAY(1,1003,3), -- a
rectangle (1003 = exterior)
 SDO_ORDINATE_ARRAY(6,11, 7,12) --it
takes only 2 points to define a rectan-
gle: the extreme bottom-left and up-
right
));

3. Modifying the US-
ER_SDO_GEOM_METADATA standard
metadata view. This operation has to be done
before the index is created. The command is
run once for each level (for each combination
of table-row, in this case for stores -

geom_shape). It contains information about
the name of the table that contains spatial da-
ta, about the SDO_GEOMETRY row from
the table, about the geometry’s dimensions
and a number (SID) that specifies the coordi-
nate system’s value.

INSERT INTO user_sdo_geom_metadata
 (TABLE_NAME,
 COLUMN_NAME,
 DIMINFO,
 SRID)
 VALUES (
 'stores',
 'geom_shape',
 SDO_DIM_ARRAY(-- 20X20 grid
 SDO_DIM_ELEMENT('X', 0, 20, 0.005),
 SDO_DIM_ELEMENT('Y', 0, 20, 0.005)
),
 NULL
);

4. Creating the spatial index (an R-tree in-
dex).
Spatial indexing is a mechanism that helps
executing spatial queries in a table based on
specific criteria. An R-tree index approx-
imates each geometry with the smallest rec-
tangle that can cover the geometry (it is
called MBR – Minimum Bounding Rectan-
gle). For many geometries an R-tree index
means hierarchical indexing the MBR rec-
tangles. This type of index is preferred when
working with spatial data because it is very
quick and works directly on geodesic data.

CREATE INDEX stores_spatial_idx
 ON stores(geom_shape)
 INDEXTYPE IS MDSYS.SPATIAL_INDEX;

5. Executing spatial queries.

- Find the topological intersection between
the “1” and “2” stores, respective “3” and “4”
stores.
SELECT
SDO_GEOM.SDO_INTERSECTION(store1.geom_sh
ape, store2.geom_shape, 0.005) as inter-
sectie
 FROM stores store1, stores store2
 WHERE store1.store_id='1' AND
store2.store_id='2';

Informatica Economică vol. 14, no. 2/2010 69

After running the query we can see that it re-
turns no result, because the stores 1 and 2 are

located at distance from one another and they
don’t intersect.

SELECT
SDO_GEOM.SDO_INTERSECTION(store1.geom_sh
ape, store2.geom_shape, 0.005) as inter-
sectie
 FROM stores store1, stores store2
 WHERE store1.store_id='3' AND
store2.store_id='4';

After running the query we can see that it re-
turns a geometry that as coordinates exactly
the extreme points of store 4 and this hap-
pens because the store 4 is located inside the
store 3.

- Calculate the area of the stores
SELECT m.name magazin,
SDO_GEOM.SDO_AREA(m.geom_shape, 0.005)
suprafata FROM stores m;

After running the query we can see the name
and the area of the stores that asre stored in
the database.

- Calculate the distance between the stores
with id 1 and 2.
 SELECT
SDO_GEOM.SDO_DISTANCE(store1.geom_shape,
store2.geom_shape, 0.005) distanta
 FROM stores store1, stores store2
 WHERE store1.sore_id='1' and
store2.sore_id ='2';

The query returned the distance 1, between
the stores 1 and 2, which is correct, as can be
seen in figure 2.

- Determine if there is a spatial relation be-
tween the areas of stores 3 and 4.
 SELECT
SDO_GEOM.RELATE(store1.geom_shape,
'anyinteract' , store2.geom_shape,
0.005) exista_intercorelare
 FROM stores store1, stores store2
 WHERE store1.sore_id='3' and
store2.sore_id ='4';

The query that refers to the interaction be-
tween the stores 3 and 4 returned TRUE, be-
cause the object 4 is in the store 3. The any-
interact attribute was used to specify the
type of interaction that needs to be checked.
The same operation applied to objects 1 and
2 or 3 and 2 would have returned FALSE.

-Determine the intersection area between the
stores ‘3’ and ‘4’
select SDO_GEOM.SDO_AREA(
(SELECT
SDO_GEOM.SDO_INTERSECTION(mag1.geom_shap
e, mag2.geom_shape, 0.005)
 FROM stores mag1, stores mag2
 WHERE mag1.store_id='3' AND
mag2.store_id='4'),0.005) from dual

70 Informatica Economică vol. 14, no. 2/2010

A complex query was used to calculate the
intersection area between 3 and 4 stores. The
result is 1, because this is the area of object
4.

7 Conclusions
Spatial databases can be optimized using spa-
tial indexes like R-tree or Quadtree. R-tree
approximates each geometry with the smal-
lest rectangle that can cover the geometry
(MBR) and is used in Oracle Spatial inten-
sively. In this paper we discussed about spa-
tial indexes and we gave some examples of
spatial queries that work with R-tree indexes.

Acknowledgement
This article is a result of the project PO-
SDRU/6/1.5/S/11 „Doctoral Program and
PhD Students in the education research and
innovation triangle”. This project is co
funded by European Social Fund through
The Sectorial Operational Programme for
Human Resources Development 2007-2013,
coordinated by The Bucharest Academy of
Economic Studies.

References
[1] E. Tanin, A. Harwood and H. Samet,

“Using a distributed quadtree index in
peer-to-peer networks”, The VLDB Jour-
nal — The International Journal on Very
Large Data Bases, Vol. 16, No. 2, April
2007, pp. 165–178.

[2] E. Tanin, A. Harwood and H. Samet, “A
Distributed Quadtree Index for Peer-to-
Peer,” Proceedings of the 21st Interna-
tional Conference on Data Engineering,
pp. 254–255, 2005, IEEE Computer So-
ciety, Washington, DC, USA.

[3] I. Kamel and C. Faloutsos, “Hilbert R-
tree: An improved R-tree using fractals,”
Proceedings VLDB Conference, 1994.

[4] N. Roussopoulos and D. Leifker, “Direct
spatial search on pictorial databases using

packed R-trees, Proceedings ACM SIG-
MOD, 1985.

[5] T. Sellis, N. Roussopoulos and C. Falout-
sos, “The R+ tree: A dynamic index for
multi-dimensional objects, Proceedings
13th VLDB Conference, 1987.

[6] N. Beckman, H. P. Kriegel, “The R* tree:
An efficient and robust access method for
points and rectangles,” Proc. ACM SIG-
MOD, pp. 322-331, 1990.

[7] H. Samet, “The Quadtree and Related
Hierarchical Data Structures,” ACM
Computing Surveys, Vol. 16, No. 2,
June 1984, pp. 187-260.

[8] K. V. Ravi Kanth, S. Ravada, J. Sharma
and J. Banerjeen, “Indexing medium-
dimensionality data in Oracle,” ACM
SIGMOD International Conference on
Management of Data Proceedings, 1999.

[9] R. Kanth, V Kothuri, S. Ravada and D.
Abudov, “Quadtree and R-tree indexes in
oracle spatial: a comparison using GIS
data,” International Conference on Man-
agement of Data, Proceedings of the
2002 ACM SIGMOD international confe-
rence on Management of data, Madison,
Wisconsin, SESSION: Industrial ses-
sions: commercial implementation tech-
niques, pp.: 546 – 557, 2002.

[10] A. Guttman, “R-trees: A dynamic index
structure for spatial searching,” Proc.
ACM SIGMOD, pp. 47-57, 1984.

[11] I. Kamel and C. Faloutsos, “On packing
R-trees”, Proceedings 2nd International
Conference on Information and Know-
ledge Management, pp. 490-499, 1993.

[12] D. M. Gavrila, “R-Tree Index Optimiza-
tion,” Advances In GIS Research II: Pro-
ceedings of the Sixth International Sym-
posium on Spatial Data Handling, pp.
771–791, 1994.

[13] E. G. Hoel and H. Samet, “Data-parallel
R-tree algorithms,” Proceedings 23rd In-
ternational Conference on Parallel
Processing, pp. 49-53, 1993.

Informatica Economică vol. 14, no. 2/2010 71

[14] D. Abugov and N. Alexander, “Oracle
Spatial User’s Guide and Reference, 10g
Release 1 (10.1),” Oracle Corporation,
2003.

[15] I. Lungu and A. Velicanu, “Spatial Da-
tabase Technology Used In Developing
Geographic Information Systems,” The
9th International Conference on Informat-

ics in Economy – Education, Research &
Business Technologies, Academy of Eco-
nomic Studies, Bucharest, 7-8 May 2009,
pp. 728-734.

[16] M. Velicanu, I. Lungu, M. Muntean and
S. Ionescu, Sisteme de baze de date – Te-
orie şi practică, Editura Petrion, Bucha-
rest, 2003, pg. 339.

Anda VELICANU has graduated the Faculty of Economic Cybernetics, Sta-
tistics and Informatics of the Bucharest Academy of Economic Studies, in
2008. She is a PhD student in the field of Economic Informatics at the Acad-
emy of Economic Studies and since January 2009 she is a Pre-Assistant Lec-
turer. She teaches Database, Database Management Systems and Economic
Informatics seminars at the following faculties: Economic Cybernetics, Sta-
tistics and Informatics, Commerce, Marketing and International Business and

Economics. Her research activity can be observed in the following achievements: 6 diplomas,
2 scientific awards, 4 proceedings, 3 articles published in scientific reviews, 2 research con-
tracts, 3 books and 1 research grant. She is a member of INFOREC professional association,
scientific secretary of “Database support for business” master program and part of the tech-
nical team of the “Database Science Journal”. Her scientific fields of interest include: Data-
bases, Database Management Systems, Programming, Information Systems.

Ştefan OLARU has graduated the Faculty of Economic Computation and
Economic Cybernetics in 2006. He holds a MD degree in Information Securi-
ty and he is currently a PhD candidate. He is the author of more then 7 jour-
nal articles in the field of database security, virtualization and knowledge
management. He worked for 3 years with Oracle Corporation from where he
gathered important knowledge in database administration. He is an Oracle
Certified Associate (OCA) since 2008. He is currently working at Ericsson

Romania where he is certified as Senior Managed Services Engineer since 2009.

